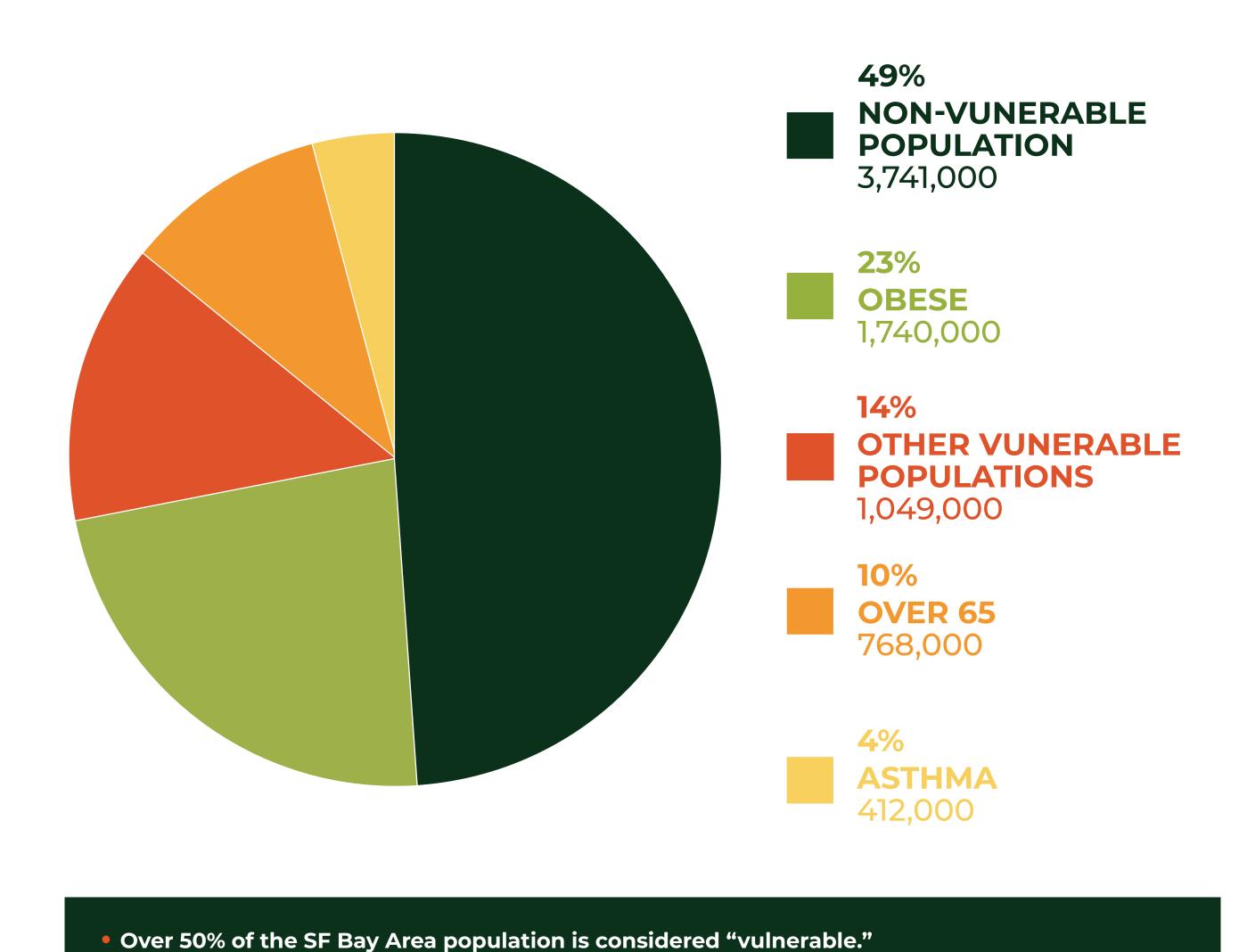
# HOT ZONES, COOL HOMES:

## RETHINKING BUILDING EFFICIENCY IN A WARMING CLIMATE



Benjamin Cheah & Jean Shelton, Verdant Associates, Mary Sutter, Grounded Research, Chris Cone, Sonoma County Transportation and Climate Authorities (a BayREN Member)


## BACKGROUND

The Bay Area Regional Energy Network (BayREN) is an organization made up of the nine counties in the San Francisco Bay Area.

- Warming temperatures are posing significant health risks, especially to vulnerable populations.
- Temperatures are increasing, AND heat waves are lasting longer.
- 56% of households in the Bay Area do not have air conditioning.

## DANGERS OF EXTREME HEAT

- People start experiencing physical responses to indoor temperatures above 90°F.
- Between 18% (Solano County) and 91% (San Francisco) households in the Bay Area do not have air conditioning.



## SIMULATION FINDINGS Count of Hours where Indoor Temperature is Greater than 90°F - Single Family Single Family Cumulative Measures CZ 3 Coolest BayREN CZ CZ 12 Warmest BayREN CZ + Radiant Barrier 16 hours + CoolRoof 5 hours + Radiant Barrier 16 hours + Attic Insulation 10 hours + Attic Ventilation 9 hours + Whole House Fan O hours Window Shading and exterior paints with high solar reflectance ratings can provide significant heat gain reductions. Count of Hours where Indoor Temperature is Greater than 90°F - Multifamily **Mulitfamily Cumulative** CZ 3 Coolest BayREN CZ CZ 12 Warmest BayREN CZ 485 hours Shading + Paint + Windows

16 hours

#### Single Family Annual Indoor Temperature Example CZ12 - Fairfield

Mid-Floor Corner Units see significantly higher more heat gain than Ground-Floor Middle Units

Multifamily Units have trouble getting to zero hours above 90°F without mechanical cooling.

+ Minisplit 0 hours

Baseline

Shading

+ Windows 8 hours

+ Minisplit O hours



## WARMING CLIMATE

| County        | Avg. Longest Heat Event |                          |            |
|---------------|-------------------------|--------------------------|------------|
|               | Baseline<br>1961-1990   | Mid-Century<br>2035-2064 | % Increase |
| Alameda       | 4                       | 7                        | 175%       |
| Contra Costa  | 7                       | 14                       | 200%       |
| Marin         | 4                       | 6                        | 150%       |
| Napa          | 9                       | 20                       | 222%       |
| San Francisco | 0                       | 1                        | -          |
| San Mateo     | 1                       | 2                        | 200%       |
| Santa Clara   | 4                       | 7                        | 175%       |
| Solano        | 13                      | 27                       | 208%       |
| Sonoma        | 4                       | 7                        | 175%       |

- FEMA defines a heat event as "a long period (2-3 days) of high heat and humidity with [outdoor] temperatures above 90°F"
- Most Bay Area Counties will experience a significant increase in the length of their heat events by the mid-century.

## METHODOLOGY

NREL's BeOpt to create SF and MF building files, and simulated using NREL's OpenStudio® - HPXML

| Climate Zones Simulated                              |                        |                     |                |  |  |
|------------------------------------------------------|------------------------|---------------------|----------------|--|--|
| CZ2: Santa Rosa                                      | <b>CZ3:</b> San Carlos | CZ4: San Jose       | CZ5: Fairfield |  |  |
| Typical Home Prototypes Based Upon Details From RASS |                        |                     |                |  |  |
| Avg. Square Footage                                  |                        | Number in Household |                |  |  |
| Window Detail                                        |                        | Insulation Level    |                |  |  |
|                                                      |                        |                     |                |  |  |

## HEAT MITIGATION STRATEGIES

Passive & Mechanical Measures can provide Heat Mitigation Benefits

| • Window Shading                                       | • Windows                           |  |
|--------------------------------------------------------|-------------------------------------|--|
| • Exterior Paint                                       | <ul> <li>Wall Insulation</li> </ul> |  |
| • Radiant Barriers                                     | • Air Sealing                       |  |
| <ul> <li>Attic Insulation &amp; Ventilation</li> </ul> | • Whole House Fan                   |  |
| • Cool Roofs                                           | • HVAC Heat Pump                    |  |